

Practical Guide:

NIST Special Publication 800-190

Application Container Security Guide

www.aquasec.com 2

Contents
Introduction .. 2

The Challenges According to NIST .. 2

NIST Checklist for Container Security ... 6

Aqua Container Security Platform: Quick Overview .. 18

Introduction

The NIST (National Institute of Standards and Technology, part of the U.S. Dept. of Commerce) has released a

container security guide to provide practical recommendations for addressing the container environment’s

specific security challenges. This document covers the major risks and their security countermeasures

organizations should consider deploying according to NIST. For more information and best practices, please

contact us.

The Challenges According to NIST

Containers introduce dramatic changes into application development. They often drive an increase in the use

of open-source components, and they also accelerate the pace of software development, challenging

established security check-points to keep up. This new process may introduce vulnerabilities, and evade

vetting processes based on existing version and configuration management.

Further, the container stack is radically new. Containers run on a shared kernel, which limits the level of

isolation, and they require dynamic networking – both of which make it harder to have visibility and control

over the runtime environment. This might also render existing, non-container-native countermeasures, such

as IDS/IPS and firewalls, ineffective, in that they have no visibility into the activities of running containers.

This section offers a summary of the container environment challenges according to NIST.

http://www.aquasec.com/
https://www.aquasec.com/about-us/contact-us/

www.aquasec.com 3

3.1. Image Risks

As container images are distributed as is into hosts using orchestrators, you need to ensure the images are

free from known vulnerabilities and misconfigurations. It is essential that developers and IT operations only

use authorized images, which were scanned and available from a trusted registry.

Containerized applications cannot really be modified or patched once they are running. Even if you do, your

orchestration will overwrite and reload that container from the registry image and not the patched image.

Therefore, it’s important to address known vulnerabilities and configuration errors at the development

phase.

Image vulnerabilities and misconfiguration can be sensitive data, such as PII/GDPR in an image, embedded

secrets, image that was configured with root privileges, and image with malware at the base image or known

CVEs vulnerabilities.

But that is not all. Oftentimes, vulnerabilities are discovered after the image was containerized and

instantiated. If this were to happen, how would you handle it?

Scanning for known vulnerabilities in images and registries to ensure images deployed into production are

free from known vulnerabilities, is a good starting point in your container security program. But

vulnerabilities can be discovered long after containers are running and you need to know which container is

using a vulnerable image/process. Therefore, it is important, as described in the following sections, to

combine image scanning with runtime protection and detection capabilities.

3.2 Registry Risks

Many users, including developers, DevOps and auditors, access registries and other container

resources at different stages in the pipeline. User access should therefore be secured and managed

using a granular access control model that enforces least privilege policy at the image/registry and

even container level while providing full accountability. User access privileges should be defined

according to role, allowing or blocking specific actions such as write, view and more to prevent

intentional or accidental damage to images.

Further, user access to registries should be via secure channels to prevent attackers from exploiting

vulnerable images in addition to conducting ‘man-in-the-middle’ attacks to intercept intended

connection registries and steal privileged credentials.

In a container/DevOps environment, the ‘health’ or stability of an image or app is measured against

its lifetime, however, in a reverse manner. If in the past, app stability was measured by the number

of months the app was running, for example, with images, it’s just the opposite. Images are

continuously scanned and replaced with new and updated images much more often (yes, as like

with secrets, image rotation is a security best practice). Recycled images are more secured than

http://www.aquasec.com/

www.aquasec.com 4

stale, unpatched images. To maintain trusted registries, images should be continuously scanned and

recycled. In addition, images that were pulled from outside of the pipeline should be scanned as

well, in case they will be used as base images.

3.3. Orchestrator Risks

Access to orchestrators, as to any other sensitive asset, should be managed and controlled centrally

and not separately from an organization’s directory, as orchestrators run various apps with different

sensitivity levels, that are managed by different teams. Organizations need to ensure that users

granted access to orchestrators is limited to the needs of their specific job and based on an

organization’s access security policy. This can help organizations reduce the risk of exposure to

abuse or error.

Another orchestrator related risk is regards networks. Traditional network monitoring solutions

have a blind spot when it comes to network traffic between containers/nodes. This is due to the

way the host environment is architected whereby the shared OS runs the container engine and the

engine runs the containers themselves. Therefore, the OS is ‘aware’ of the container engine but is

not ‘aware’ which containers are running. The container engine on the other hand, ‘knows’ which

containers are running but is not aware of container activity. So, if you’re running application

firewalls or host-based intrusion prevention systems (HIPS) to monitor the OS, you’d be lacking both

the visibility into container activity and the ability to monitor and control the same host containers’

traffic. This is even risker where you have a mix of non-sensitive and sensitive container on the

same node or virtual network, as the NIST states. For example, a public-facing app resides on the

same node as your PCI-related app. As sensitive related apps are exposes to greater risks from a

network attack, it would increase your attack surface.

In addition, NIST lists examples of consequences caused by weak orchestrator configuration,

including unauthorized host added to a cluster, comprised shared key of clusters that can

compromise all nodes, and unencrypted, unauthenticated privileged user communication /access to

an orchestrator.

3.4 Container Risks

Malicious activity between containers/host OS can be originated by malicious software and expand

to other resources due to poorly defined outbound/inbound connections. Any outbound

connectivity is a potential attack path, so a good best practice would be to limit ingress and egress

points to the necessary limit. As noted above, no visibility into containers’ activity can lead to

compromised runtime environment. In addition, NIST details runtime misconfigurations as

overprovisioned sys calls, unneeded executables, or container privileges (e.g. running as root) which

enable the container to act as part of the host OS or make changes to host files, location, etc. and

access all other containers on the host.

http://www.aquasec.com/

www.aquasec.com 5

The challenge is not only how to prevent these types of risks but in doing so without blocking

legitimate access to services required by the applications. Multiply this by a large and proliferating

number of applications and container types and the task becomes ever more challenging.

Therefore, communication rules, access management, secrets management, and permissions,

should be automatically defined in the container level, not on the host or cluster level.

In addition, rogue containers can be originated from an image drift, once an image is instantiated or

while in runtime. Even if images are scanned and authorized in the build environment, they can be

changed maliciously or unintentionally in runtime. Further, scanning containers in runtime is a too

much too late practice. It’s not only a waste of host resources but also ineffective as it requires the

image to go back into pre-production for remediation instead of it being stopped from being

instantiated in the first place. In cases where images are already instantiated and deploy into

runtime, any patching of running containers is also ineffective, as mentioned above, as your

orchestration will overwrite and reload that container from the image and not from the ‘patched’

container.

Container Threat Landscape

Dev

Admin

Uncontrolled user access to
registries, unnecessary
privileges, insecure connection

• Unrestricted container access to
host/network resources

• Poorly defined container network
connections (inbound/outbound)

• No visibility into container
activity/network traffic between
containers

• Undetected changes/added
executables to containers

• Unlocked container permissions

• Residual data (libraries, packages,
executables) in containers/hosts

• Image-container drift

• Overprovisioned container
permissions and system calls

• Unvetted containers running

• Host OS component vulnerabilities

Unsafe user access &
overprovisioned permissions

Vulnerable, stale, untrusted images

• Misconfigured
orchestrator

• Disparate identity &
access governance
solutions lack the ability
to enforce consistent
access policies

External Registry

Image Creation, testing and accreditation

NIST SP 800-190: Major Risks for Core Components of Container Technologies

Image Storage and retrieval Container deployment & management

Host with Containers

Internal Registry

Orchestrator

Testing &
Accreditation

Hosts/ users
unencrypted and
unauthenticated
communication

(e.g. misconfiguration, PII/GDPR
data, CVEs, hardcoded, shared
secrets, malware, root privileges)

http://www.aquasec.com/

www.aquasec.com 6

3.5 Host OS Risks

Vulnerabilities in hosts can be caused by overprovisioned user access rights, unnecessarily bloated

OS resources, unpatched/not up to date OS and container engine versions, open network ports,

badly configured authentication, and lack of namespace isolation.

Finally, in the absence of a systemic, container-native approach to visibility and control for the

container layer and host-level activity, containerization can be a minefield.

It is therefore important to combine image and host scanning with runtime protection and

detection capabilities. The combination of image scanning and assurance policies with running

container behavior analysis and network rules enforcement, enables organizations to keep their

pipeline and production environments safe. By gaining insight on the image content as well as the

container’s expected activities, controlling container communication and user access based on role

and permissions, incident response teams can quickly detect and respond to unauthorized activities.

NIST Checklist for Container Security

A practical guide to help organizations achieve and demonstrate compliance in the
container environment
The following checklist provides a summary of key recommendations that NIST introduces as well as

important actions organizations should take to help achieve and demonstrate compliance. Aqua’s cloud-

native solution enables organizations to implement most of the countermeasures presented by NIST. If you

have any questions or which to schedule a demo, contact us.

NIST Recommendations Aqua Feature Addressing the Requirement

4.1 Image Countermeasures

4.1.1 Image Vulnerabilities.

Use container-native

vulnerability management

solution which

1. Integrates into the

pipeline and the image

- Aqua provides an inventory of containerized applications, covering the
different repositories, images, containers, and hosts in the
organization

- Aqua vulnerability scanning is integrated into the build process,
enabling developers to seamlessly perform vulnerability/configuration
scans and apply remediation at the build phase using native build tools
(e.g. Jenkins, TeamCity, etc.)

http://www.aquasec.com/

www.aquasec.com 7

lifecycle; from image build,

through registries to runtime

2. Provides visibility into
vulnerabilities at all layers of
the image, cross all apps,
enabling reporting and
monitoring capabilities

3. Offers policy-driven
enforcement to ensure
image compliance by
establishing “quality gates”
at each stage of the build
and deployment process

- Aqua connects to image registries and enumerate all images stored in
them. For each image, it creates an inventory of the installed packages.
Aqua will also process all images stored on the hosts, that were not
pulled from an image registry, and create a package inventory for
every image

- Aqua uses multiple resource feeds for scans (public CVEs, vendor-

issued, proprietary vulnerability data streams and malware) to achieve
refined results and less false positives

- Aqua enables compliance and security users to implement their own
custom compliance checks

- Image scans are ranked based on severity and CVSS scores. CVSS score

is included in risk results for an image and can be used as policy criteria
for image acceptance

- Each image is scanned for vulnerabilities both in its OS packages and

development language files

- Aqua provides image bill of materials, lists all image packages files and

layer history

- Aqua provides validated chain of custody and distinguishes between
vulnerabilities that were added to the code by the developer and
known vulnerabilities in the base image for fast and effective
remediation process

- Aqua enables “quality gates’ throughout CI pipeline using distinct

image assurance policies. Policies are automatically
allowed/disallowed images based on set of criteria such as usage
context, image name, label and registries

- With Aqua image assurance policy, users can block images that have

not been vetted by Aqua (e.g. images that were not scanned), meaning
that only approved images will be allowed to run

- A developed image will be promoted to production only if it passes all

the required tests. Aqua admin can also assign labels to images and
create security policy that allows only images with specific labels to
enter production

- Aqua provides actionable mitigation information on detected

vulnerabilities for fast and effective remediation

http://www.aquasec.com/

www.aquasec.com 8

4.1.2 Image configuration

defects. Have processes in

place to validate and enforce

image compliance;

1. Validate image
configuration settings
2. Consensually monitor
image compliance state
3. Block non-compliant
images from running
4. Use trusted sources for
base images and
continuously update base
layers to reduce attack
surface
5. Control user access to
runtime containers

- Aqua continuously scans image OS packages and development
language files for known vulnerabilities and misconfiguration
immediately after build, as the image is pushed to a registry, to:

o Identify the base image used for the build (e.g. is the image
from a reputable source?)

o Identify vulnerabilities in open source packages
o Identify if image is configured as root/admin

- Images that do not pass acceptance criteria are marked as ‘Disallowed’
and will not be run on nodes protected by the Aqua Enforcer

- Aqua admin can upload custom compliance checks
- Aqua provides broad set of predefined image assurance policies
- Auditor can track changes in vulnerability status and maintain

vulnerability vs. remediation trends
- On a production node, Aqua allows to pull/run only images that are:

o Registered and their risk posture is known (use unique identifier
for images, resilient to name changes)

o Passed image risk policy or have been explicitly allowed by auditor
o Block unauthorized images (e.g. blacklisted images) from being

deployed and instantiated in production
o Prevent changes to executables and adding new executable to file

system once containers are instantiated
o Enforce container least privileges
o Remove unused/unnecessary executables
o Identify and block unregistered images running in production

4.1.3 Embedded malware.

Continuously monitor

images for embedded

malware, including malware

signature sets and

behavioral detection

heuristics method.

- Aqua scans images for malware as part of the image assurance policy
- Aqua enables zero-configuration container behavioral profile to

establish a baseline of behavior. This behavior is enforced on a
granular level with the stated criteria.

- Aqua enforces image immutability by not allowing packages and
components not present in the original image to be introduced to an
existing image or container

- Aqua logs all access, Docker commands, container activity, secrets
usage and system events

4.1.4 Embedded clear text
secrets.
Securely store secrets
outside the image and
deliver them only to
authorized containers on
demand.
Encrypt secrets at rest and in
transit.

- Aqua scans for hardcoded secrets (e.g. SSH keys) within images. After
running a scan, Aqua generates an inventory view of secrets, their
locations, who/what has access to them and risk score

- Aqua provides central management and secure distribution of secrets
and keys into running containers, as well as
updates/rotation/revocation with no container downtime

- Secrets are not visible outside the container and encrypted in transit
- Secrets are not persistent on disk on the host
- Aqua integrates with CyberArk EPV, CyberArk Conjur, HashiCorp Vault,

AWS KMS and Azure Key Vault as the centralized secrets stores
- Aqua monitors container secrets activity, tracks and logs secrets usage

http://www.aquasec.com/

www.aquasec.com 9

4.1.5 Use of untrusted
images. Maintain set of
trusted images and registries
by

• Continuously scanning
for vulnerabilities and
misconfigurations

• Controlling authorized
image and registries

• Maintaining and
validating image hash to
ensure only authorized
images are running

- Aqua scans images on any registry across any platform
- Aqua uses a cryptographic digest of the image content across all layers

to create a unique digital fingerprint. Images that don’t match known
fingerprints will be blocked from running, enforcing image integrity
and preventing drift.

- Aqua blocks an image according to any of the following:
o Risk score above a given threshold
o High severity vulnerabilities
o CVE blacklist
o OSS license types blacklist
o Malware
o Embedded secrets
o Not passing a custom compliance check or SCAP script

- Aqua re-validates image status (allowed/disallowed) before
instantiation

- Aqua detects any changes to containers (binaries, certificate, hash,
system calls)

- Aqua associates containers to source code for end-to-end vulnerability
visibility and traceability

http://www.aquasec.com/

www.aquasec.com 10

4.2 Registry Countermeasures

4.2.1 Insecure connections to
registries. Ensure all connection
channels to registries are
encrypted and all data pushed to
and pulled from a registry occurs
between trusted endpoints and is
encrypted in transit.

- Aqua admin can limit DevOps users to pull and run images only
from trusted registries, ensuring that only secured registries
with encrypted channels are used.

4.2.2 Stale images in registries.
Ensure only up-to-date, authorized
images are used based on clear
naming convention.

- Aqua allows daily scans of images to alert on out-of-date
vulnerable packages, base-images and versions

- Aqua allows the admin to define stale images via custom checks
and block them from running

- Aqua’s labels feature allows categorization of images to
differentiate between (for example) production and non-
production images, or between different applications.

4.2.3 Insufficient authentication
and authorization restrictions.
Controls and manages user access
to registries via integration with
directory services. Audit and log
access to registries (write access
and read of sensitive data).
Integrates automated scan into CI
processes to ensure only
authorized images can be used

- Aqua provides Role Based Access Control (RBAC) to limit super-
user permissions, tasks and container resources (e.g. images,
containers, nodes, networks, pods, volumes etc.)

- Aqua provides both preconfigured and custom roles, that enable
defining granular privileges on specific groups of containers,
images, pods, hosts, etc.

- Enforce effective security hygiene into the CI/CD build process
via scan plugins to any CI tool (e.g. Jenkins, Microsoft VSTS,
Bamboo, GoCD, Gitlab, TeamCity, etc.)

- Aqua monitors and alerts on unauthorized user activity
- Aqua logs all access activity for investigations and regulatory

compliance

4.3 Orchestrator Countermeasures

4.3.1 Unbounded administrative
access. Orchestrators should use a least
privilege access model to enable
controlled and limited user access to
sensitive resources (host, containers,
and images).

- Aqua provides visibility into orchestrator configuration of
these settings as part of the Docker and Kubernetes CIS
benchmark checks (daily)

- Aqua also provides its own controls to limit such access at
the host, image and container level, regardless of the
orchestrator used. With Aqua, admins can:

o Control which users have access to which K8s
commands. For example, creates fine-grained user
roles that govern access to kubectl commands, or
assigned to specific deployments and nodes

o Using Aqua RBAC, admin can block users’ direct
access to host while enabling host management via
the orchestrator

http://www.aquasec.com/

www.aquasec.com 11

4.3.2 Unauthorized access. Use strong
authentication methods (e.g. SSO) to
secure access to cluster-wide admin
accounts.

In addition, encrypt data at rest and
control access to the data from
containers only, regardless of the node
they’re running on.

- Aqua admin can set and enforce user access policies to
container resources (e.g. view, edit)

- Aqua monitors user access, blocks and alerts on any
unauthorized access attempts

- Aqua’s labels-based management can be used to label
hosts as dev/test/production, and different RBAC and
container policies can be applied by these labels, so that
specific users can only access resources with specific labels

- Aqua admin can set up policy to block and alert on any
unauthorized connection to/from containers (e.g. file
access)

- Aqua continuously logs user activity including access and
attempted access events

4.3.3 Poorly separated inter-container
network traffic. Configure orchestrators
to segment network traffic into discrete
virtual networks by sensitive level (e.g.
public-facing apps can share a virtual
network vs. internal apps)

- Aqua’s Container Firewall (Nano Segmentation) limits
network connectivity between workloads by applying a
firewall-like concept for the container environment. This
capability allows creating network boundaries across
services, where admins can control which networks are
accessible for each service. Aqua admin can define

o Which containers’ inbound/outbound ports are
accessible to/from which IPs

o Container network connections based on set of
service-oriented firewall rules, regardless of where
container resides

- Aqua’s label-based management allows to label groups of
containers as, for example, PCI/PII-sensitive, either within
the Aqua console or by inheriting security group definitions
from orchestrators.

- With Aqua labels users can easily create a label based rule
for operations or inventory purposes, for example,
container with a certain label ‘PCI-DSS compliance’, will be
blocked from having outbound connections, so any
outbound connectivity will be automatically denied. Aqua
automatically alerts and blocks unauthorized
communication flows

- Use labels and services to automatically group containers to
be deployed on separate nodes and network segments.

4.3.4 Mixing of workload sensitivity
levels. Configure orchestrators to
separate container and hosting zones
by automatically grouping and
deploying workloads to hosts based on
their sensitivity level, purpose and
threat posture. Further, for additional
layer of security, it’s recommended to
segment network traffic more discretely
based on sensitivity levels as well.

http://www.aquasec.com/

www.aquasec.com 12

4.3.5 Orchestrator node trust.
Configure orchestrators to safeguard
secure-by-default ensuring nodes have
a persistent identity, gain accurate
inventory of nodes and their network
connections.
Have the means in place to
isolate/remove compromised nodes
would not compromise others and
finally, use authenticated network
connections between cluster members
and end-to-end encryption of intra-
cluster traffic.

- Aqua automatically discovers all image repositories,
running containers, nodes, and hosts across the
environment, mapping out network traffic, to enable
admins to maintain up-to-date inventory of the container
environment

- Container network traffic is mapped across application
services, regardless of actual network infrastructure used,
and including networking within and across hosts

- Aqua prevents orchestrators such as Kubernetes from
deploying untrusted images
Aqua performs host integrity checks, including vulnerability
scan, malware and CIS test to ensure nodes are secured.

4.4 Container Countermeasures

4.4.1 Vulnerabilities within the runtime
software. Monitor container runtime
for vulnerabilities. Use tools to detect
CVEs vulnerabilities and ensure
orchestrators only allow deployments
to properly maintained runtimes

- Aqua provides a view of all running containers and their
originating images, including package inventory for every
running container

- Aqua uses its image assurance fingerprinting to track
containers back to their original images – by preventing
drift from the original images, Aqua enforces the CVE risk
policy and does not allow containers that were from
unauthorized image to run.

- Aqua continuously updates its cyber intelligence feed, to
ensure that if a newly discovered vulnerability exists in a
running container, this will generate an alert and allow
remediation.

- Aqua runtime protection also blocks unauthorized
executables from running with no container downtime

http://www.aquasec.com/

www.aquasec.com 13

4.4.2 Unbounded network access from
containers. Control and monitor
containers’ outbound network traffic as
well as inter-container traffic. Use app-
aware tools to gain visibility into inter-
container traffic as well as to
dynamically generate rules used to filter
traffic based on specific app
characteristics. In addition, these tools
should provide:

• Automated container networking
surfaces (both inbound ports and
process-port bindings)

• Detection of traffic flows both
between containers and other
network entities

• Detection of network anomalies
(e.g. unexpected traffic flows, port
scanning, outbound access to
potentially risky destination)

• Aqua discovers and maintains up-to-date inventory of
containerized applications, image repositories, and hosts
across the cloud environment

• Aqua maps a container network traffic across application
services, regardless of actual network infrastructure used,
and including networking within and across hosts

• Aqua’s Container Firewall (Nano Segmentation) enables
admins to limit network connectivity between services by
applying a firewall-like concept for the container
environment. This capability allows creating network
boundaries across services, where admins can control
which networks are accessible for each service

• Aqua has specific threat mitigation defenses to detect and
prevent port scanning

• Aqua has specific threat mitigation defenses to detect and
prevent connections to IP addresses with poor reputation

• Aqua admins can also deny inbound and/or outbound
communications from/to containers in the network section
when creating a new runtime profile for container

• Aqua admins can set up alerts and preventive actions on a
container’s unauthorized activity including unauthorized
network connections (inbound and outbound)

• Aqua monitors and logs resources activity and consumption
including network connectivity

• Aqua admin can set real-time audit events on policy
violations and send it to organization’s SIEM solution. In
addition.

4.4.3 Insecure container runtime
configurations. Use tools/processes to
continuously asses and automatically
enforce configuration settings against
CIS standards, for example. In addition,
as an added control, consider using
Mandatory Access Control (MAC)
technologies to secure the host OS layer
and ensure only specific files, path,
processes, and network sockets are
accessible to containerized apps.

SECCOMP and custom container
profiles also can also be used to
constrain system-level and other
capabilities where runtime containers
are allocated. For high-risk apps,
consider using additional profiles.

- Aqua enables the scan of container engine compliance
against Center for Internet Security (CIS) benchmarks for
both Docker and Kubernetes, and run those scans daily

- Aqua controls and monitors container access rights to OS
and host resources

- Aqua prevents kernel operation (e.g. does not allow
CHOWN)

- Aqua centrally manages and enforces SECCOMP profiles
- Aqua admins can set and control container memory and

CPU consumption and running process limits to prevent
DOS attack

http://www.aquasec.com/

www.aquasec.com 14

4.4.4 App vulnerabilities. Use
container-native tools to automatically
profile containerized apps using
behavioral analysis and build security
profiles to be able to detect and
prevent anomalies event at runtime,
such as:

• Invalid or unexpected process
execution

• Invalid or unexpected system calls

• Changes to protected configuration
files and binaries

• Writes to unexpected locations and
file types

• Creation of unexpected network
listeners

• Traffic sent to unexpected network
destinations

• Malware storage or execution

Further, containers should also be run
with their root filesystems in read-only
mode to make the containers more
resilient to compromise. In addition,
writes privileges can be defined and
monitored separately.

- Aqua automatically creates a security profile based on
container behavior - file access, resource usage, read-only
root filesystem, network settings, namespace settings,
seccomp profile, and executables, baselining all legitimate
container activity and using machine learning to create a
whitelisting policy. This creates least privilege security
runtime profile that Aqua admin can then edit and save

- Aqua admins can also manually tweak the profile
parameters for specific parameters Aqua detects and alerts
on anomalies, if occurred. Only legitimate container activity
will be permitted, automatically preventing many types of
malicious behavior and privilege abuse in real-time

- Aqua scans images and hosts for malware
- Aqua’s security research team continuously provides threat

mitigation protections (“IPS for containers”) that block
specific behaviors that are indicative of attacks, such as fork
bombs and attempts to access malicious IP addresses

- All events are logged by Aqua. Event details include the
user, image name, container name, rule, and the reason for
the event severity

- Admins can also configure forwarding of events to external
SIEM and analytics tools, such as Splunk, ArcSight,
SumoLogic and more

4.4.5 Rogue containers. Create
separate environments for
development, test, production, and
other scenarios, each with specific
controls to provide RBAC for container
deployment and management activities.

In addition, container creation should
be associated with individual user
identities and logged to provide activity
audit trail.

Further, it is recommended to enforce
baseline requirements for vulnerability
management and compliance prior to
deployment.

- Aqua’s labels-based management can be used to segregate
resources/environments by labeling hosts as
dev/test/production, and different RBAC and container
policies can be applied by these labels, so that specific users
can only access resources with specific labels

- By default, when admins deploy Aqua Enforcer on a
container host, the Aqua Enforcer applies "owner-based
access control". This means that a user who is a container
owner (a user who created and started the container) has
full container access, but other users will not have the same
degree of container access. The default "owner-based
access control" behavior might be applicable for most
common container use-cases. To extend or reduce
privileges admins can create policies and explicitly assign
user permissions

- Aqua integrates with the organization’s identity
management systems to map container users to the
organizational user groups, and SAML for single sign-on.
This allows even more granular access control and
separation of duties

http://www.aquasec.com/

www.aquasec.com 15

4.5 Host OS Countermeasures

4.5.1 Large attack surface. Use
container specific OS whenever
possible, or follow NIST SP 800-123 to
host-OS hardening practices (e.g. host
that runs containers cannot run other
apps/unnecessary system services, etc.
to minimize attack surface). Further,
continuously scan host (e.g. kernel) for
vulnerabilities and updates.

- Aqua continuously scans host for vulnerabilities and
malware

- The host compliance configuration scan is done against the
Center for Internet Security (CIS) benchmarks (Docker, K8s)

- Restrict and enforce container’s access to the specific
resources it required

4.5.2 Shared kernel. Do not mix
containerized and non-containerized
workloads on the same host instance.
(e.g. if a host is running a web server
container, it should not also run a web
server as a regularly installed
component directly within the host OS).
This will also make it easy to apply
optimized countermeasures for
container protection.

Restrict and enforce container’s access to the specific
resources it required

4.5.3 Host OS component
vulnerabilities. Implement
management practices and tools to
validate the versioning of components
provided for base OS management and
functionality. Further, redeploy OS
instances/apply updates (security and
components wise), to keep the OS up-
to-date.
Moreover, to reduce the attach surface,
the host OSs should operate in and
immutable manner with no data as well
as app-level dependencies uniquely
stored on the host. All app components
and dependencies should be packaged
into containers. This will help in
detection of anomalies and
configuration drift.

- Aqua scans the host OS for vulnerabilities and malware
- Aqua logs user login and logout events on the host
- Aqua scans the host for configuration issues per the CIS

Docker Benchmark

http://www.aquasec.com/

www.aquasec.com 16

4.5.4 Improper user access rights.
Ensure all authentication to the OS is
audited, as well as monitor and login
anomalies and privileges escalation to
be able identify, for example,
anomalous access patterns to host and
privileged commands to manipulate
containers.

- Aqua audits all login attempts to the host, including
invocation of sudo programs

- Aqua controls all commands that can manipulate
containers; such attempts are audited and allowed/denied
based on user access control rules

4.5.5 Host file system tampering.
Ensure containers are running with
minimal set of file system permissions
required. Very rarely should containers
mount local file systems on a host.
Instead, any file changes that containers
need to persist to disk should be made
within storage volumes specifically
allocated for this purpose. In no case
should containers be able to mount
sensitive directories on a host’s file
system, especially those containing
configuration settings for the operating
system.
Use tools to monitor which directories
are mounted by containers and prevent
these containers form being deployed.

- Aqua automatically creates an image security profile based
on container activity, which Aqua tracks and analyzes. The
profiler analyzes and reports on the security profile by
noting vital component usage, resources, and network
settings. This creates a least privilege security runtime
profile which Aqua admin can then edit and save

- Aqua enables admins to restrict containers from specific
mounting volumes or from writing into specific volumes or
directories

- Any behavior not allowed by the Aqua container behavioral
profiles will result in alerts being generated and logged

- Aqua records all access, Docker commands, container
activity, and system events and provides a full audit trail

http://www.aquasec.com/

www.aquasec.com 17

4.6 Hardware Countermeasures.
Establish hardware/firmware root of
trust to ensure containers are being run
in a secure environment, by:
1. Measure firmware, SW, and

configuration data before it is
executed using a Root of Trust for
Measurement (RTM).

2. Store measurements in a hardware
root of trust, such as trusted
platform module (TPM).

3. Validate that the current
measurements match the expected
measurements. can be trusted to
behave as expected.

Extend the chain of trust to the
bootloaders, OS kernel, and the OS
components to enable cryptographic
verification of boot mechanisms,
system images, container runtimes, and
container images. For container
technologies, these techniques are
currently applicable at the hardware,
hypervisor, and host OS layers, with
early work in progress to apply these to
container-specific components.

- Aqua recommends that customers use TPM tools for HW
countermeasures, where applicable (this requirement may
not be relevant to certain cloud or multi-tenancy
deployments).

http://www.aquasec.com/

www.aquasec.com 18

Aqua Container Security Platform: Quick Overview

Aqua’s platform is a container-native, full lifecycle solution for securing container-based applications. The

Aqua CSP comprises three main components:

1. Aqua Command Center: A central management component can be deployed on multiple instances

for high availability. It provides policy management, image scanning, image lifecycle controls,

monitoring, and reporting. It integrates with image registries for image scanning, with CI/CD tools for

security testing as part of the build, and with SIEM/analytics to output audit and alert data. The

Command Center exposes full API access as well as a management console UI.

2. Aqua Enforcer: The Aqua Enforcer is itself deployed as a container, in charge of monitoring and

controlling container operational actions on every protected node. It has visibility into the activity of

other containers on the node, and employs multiple methods to stop specific activities that do not

comply with policy.

The Enforcer communicates the event stream back to the Command Center, which in turn publishes

the policy out to the Enforcers. All communications are encrypted using SSH and mutual

authentication protocols to prevent spoofing.

3. Aqua MicroEnforcer: Protects container-as-a-service (CaaS) deployments where there's no

host/cluster to manage, such as AWS Fargate and Azure Container Instances - Aqua embeds its

security controls into the image during build.

4. Aqua Cyber Intelligence: Cloud-based service that supplies container vulnerability, malware and

threat intelligence to Aqua deployments. The service relies on multiple public and proprietary

sources, and provides “virtual patching” for several attack vectors, all of which are updated regularly.

http://www.aquasec.com/

www.aquasec.com 19

* * *

For more information on the Aqua Container Security Platform,

or to schedule a product demo,

contact us.

Aqua enables enterprises to secure their container and cloud-native applications from
development to production, accelerating container adoption and bridging the gap
between DevOps and IT security.

The Aqua Container Security Platform provides full visibility into container activity,
allowing organizations to detect and prevent suspicious activity and attacks, providing
transparent, automated security while helping to enforce policy and simplify regulatory
compliance.

For more information, visit www.aquasec.com

Copyright © 2018 Aqua Security Software Ltd. All Rights Reserved.

http://www.aquasec.com/
https://www.aquasec.com/about-us/contact-us/

